Free download » Free download video courses » Statistics with R - Intermediate Level
  |   view 👀:228   |   🙍   |   redaktor: FreshWap.CC   |   Rating👍:

Statistics with R - Intermediate Level


Statistics with R - Intermediate Level
Statistics with R - Intermediate Level
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 1.81 GB
Genre: eLearning Video | Duration: 33 lectures (2 hour, 24 mins) | Language: English


Statistical analyses using the R program
What you'll learn
run parametric and non-parametric correlation (Pearson, Spearman, Kendall)
perform partial correlation
run the chi-square test for association
run the independent sample t test
run the paired sample t test
execute the one-way analysis of variance
perform the two-way and three-way analysis of variance
run the one-way multivariate analysis of variance
run non-parametric tests for mean difference (Mann-Whitney, Kruskal-Wallis, Wilcoxon)
execute the multiple linear regression
compute the Cronbach's alpha
compute other reliability indicators (Cohen's kappa, Kendall's W)
Requirements
R and R studio
knowledge of statistics
Description
If you want to learn how to perform the most useful statistical analyses in the R program, you have come to the right place.
Now you don't have to scour the web endlessly in order to find how to do a Pearson or Spearman correlation, an independent t test or a factorial ANOVA, how to perform a sequential regression analysis or how to compute the Cronbach's alpha. Everything is here, in this course, explained visually, step by step.
So, what will you learn in this course?
First of all, you will learn how to perform association tests in R, both parametric and non-parametric: the Pearson correlation, the Spearman and Kendall correlation, the partial correlation and the chi-square test for independence.
The test of mean differences represent a vast part of this course, because of their great importance. We will approach the t tests, the analysis of variance (both univariate and multivariate) and a few non-parametric tests. For each technique we will present the preliminary assumption, run the procedure and carefully interpret all the results.
Next you will learn how to perform a multiple linear regression analysis. We have assign several big lectures to this topic, because we will also learn how to check the regression assumptions and how to run a sequential (or hierarchical) regression in R.
Finally, we will enter the territory of statistical reliability - you will learn how to compute three important reliability indicators in R.
So after graduating this course, you will get some priceless statistical analysis knowledge and skills using the R program. Don't wait, enroll today and get ready for an exciting journey!
Who this course is for:
students
PhD candidates
academic researchers
business researchers
University teachers
anyone looking for a job in the statistical analysis field
anyone who is passionate about quantitative analysis

Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me

Comments (0)

Information
Users of Guests are not allowed to comment this publication.