Machine Learning for Algorithmic Trading - Second Edition (Code Files)
Machine Learning for Algorithmic Trading - Second Edition (Code Files)
by Stefan Jansen
English | 2020 | ISBN: 1839217715 | - | Code Files (ZIP) | 124 MB
The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models.
This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research.
This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples.
By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
What you will learn
Leverage market, fundamental, and alternative text and image data
Research and evaluate alpha factors using statistics, Alphalens, and SHAP values
Implement machine learning techniques to solve investment and trading problems
Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader
Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio
Create a pairs trading strategy based on cointegration for US equities and ETFs
Train a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes data
If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies.
Some understanding of Python and machine learning techniques is required.
If you want to support my blog, then you can buy a premium account through any of my files (i.e. on the download page of my book). In this case, I get a percent of sale and can continue to delight you with new books!
Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me
https://uploadgig.com/file/download/4aB49f967B7eae4d/cpczq.Machine.Learning.for.Algorithmic.Trading..Second.Edition.Code.Files.rar
https://rapidgator.net/file/b886cddc81c1b18f51fdb9bc9a8de5ec/cpczq.Machine.Learning.for.Algorithmic.Trading..Second.Edition.Code.Files.rar.html
http://nitroflare.com/view/4B39D8D4B666166/cpczq.Machine.Learning.for.Algorithmic.Trading..Second.Edition.Code.Files.rar
Significant surge in the popularity of free ebook download platforms. These virtual repositories offer an unparalleled range, covering genres that span from classic literature to contemporary non-fiction, and everything in between. Enthusiasts of reading can easily indulge in their passion by accessing free books download online services, which provide instant access to a wealth of knowledge and stories without the physical constraints of space or the financial burden of purchasing hardcover editions.
Comments (0)
Users of Guests are not allowed to comment this publication.